Help-Site Computer Manuals
Software
Hardware
Programming
Networking
  Algorithms & Data Structures   Programming Languages   Revision Control
  Protocols
  Cameras   Computers   Displays   Keyboards & Mice   Motherboards   Networking   Printers & Scanners   Storage
  Windows   Linux & Unix   Mac

Math::Amoeba
Multidimensional Function Minimisation

Math::Amoeba - Multidimensional Function Minimisation


NAME


    Math::Amoeba - Multidimensional Function Minimisation


SYNOPSIS


    use Math::Amoeba qw(ConstructVertices EvaluateVertices Amoeba MinimiseND);

    my ($vertice,$y)=MinimiseND(\@guess,\@scales,\&func,$tol,$itmax,$verbose);

    my @vertices=ConstructVertices(\@vector,\@offsets);

    my @y=EvaluateVertices(\@vertices,\&func);

    my ($vertice,$y)=Amoeba(\@vertices,\@y,\&func,$tol,$itmax,$verbose);


DESCRIPTION

This is an implimenation of the Downhill Simpex Method in Multidimensions (Nelder and Mead) for finding the (local) minimum of a function. Doing this in Perl makes it easy for that function to actually be the output of another program such as a simulator.

Arrays and the function are passed by reference to the routines.

The simplest use is the MinimiseND function. This takes a reference to an array of guess values for the parameters at the function minimum, a reference to an array of scales for these parameters (sensible ranges around the guess in which to look), a reference to the function, a convergence tolerence for the minimum, the maximum number of iterations to be taken and the verbose flag (default ON). It returns an array consisting of a reference to the function parameters at the minimum and the value there.

The Amoeba function is the actual implimentation of the Downhill Simpex Method in Multidimensions. It takes a reference to an array of references to arrays which are the initial n+1 vertices (where n is the number of function parameters), a reference to the function valuation at these vertices, a reference to the function, a convergence tolerence for the minimum, the maximum number of iterations to be taken and the verbose flag (default ON). It returns an array consisting of a reference to the function parameters at the minimum and the value there.

The ConstructVertices is used by MinimiseND to construct the initial vertices for Amoeba as the initial guess plus the parameter scale parameters as vectors along the parameter axis.

The EvaluateVertices takes these set of vertices, calling the function for each one and returning the vector of results.


EXAMPLE


    use Math::Amoeba qw(MinimiseND);

    sub afunc {

      my ($a,$b)=@_;

      print "$a\t$b\n";

      return ($a-7)**2+($b+3)**2;

    }

    my @guess=(1,1);

    my @scale=(1,1);

    ($p,$y)=MinimiseND(\@guess,\@scale,\&afunc,1e-7,100);

    print "(",join(',',@{$p}),")=$y\n";

produces the output

(6.99978191653352,-2.99981241563247)=1.00000008274829


HISTORY

See ``REAME''.


BUGS

Let me know.


AUTHOR

John A.R. Williams <J.A.R.Williams@aston.ac.uk>

Tom Chau <tom@cpan.org>


SEE ALSO

``Numerical Recipies: The Art of Scientific Computing'' W.H. Press, B.P. Flannery, S.A. Teukolsky, W.T. Vetterling. Cambridge University Press. ISBN 0 521 30811 9.


COPYRIGHT

Copyright (c) 1995 John A.R. Williams. All rights reserved. This program is free software; you can redistribute it and/or modify it under the same terms as Perl itself.

Since 2005, this module was co-developed with Tom.

Programminig
Wy
Wy
yW
Wy
Programming
Wy
Wy
Wy
Wy